Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores
نویسندگان
چکیده
BACKGROUND Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs' antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. RESULTS AND DISCUSSION The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). CONCLUSIONS The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.
منابع مشابه
Isolation of Anthrax Spores from Soil in Endemic Regions of Isfahan, Iran
To isolate and detect anthrax spores from soil in different regions of Isfahan, Iran a total of 60 environmental specimens were collected during 2003. Bacterial endospores were extracted via flotation in distilled water and were cultured on blood agar and selective PLET media. Bacillus anthracis was identified using bacteriological and biological tests. Viable Bacillus anthracis spores were iso...
متن کاملIdentification of capsule-forming Bacillus anthracis spores with the PCR and a novel dual-probe hybridization format.
Anthrax is a fatal infection of humans and livestock that is caused by the gram-positive bacterium Bacillus anthracis. The virulent strains of B. anthracis are encapsulated and toxigenic. In this paper we describe the development of a PCR technique for identifying spores of B. anthracis. Two 20-mer oligonucleotide primers specific for the capB region of 60-MDa plasmid pXO2 were used for amplifi...
متن کاملEffects of L-alanine and inosine germinants on the elasticity of Bacillus anthracis spores.
The surface of dormant Bacillus anthracis spores consists of a multilayer of protein coats and a thick peptidoglycan layer that allow the cells to resist chemical and environmental insults. During germination, the spore coat is degraded, making the spore susceptible to chemical inactivation by antisporal agents as well as to mechanical inactivation by high-pressure or mechanical abrasion proces...
متن کاملA microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies.
Bacillus anthracis spore germination is usually detected in vitro by alterations in spore refractility, heat resistance, and stainability. We developed a more quantitative, sensitive, and semi-automated procedure for detecting germination by using a microtiter kinetic reader for fluorescence spectrophotometry. The procedure was based on the increase in fluorescence of spores with time during th...
متن کاملThe stimulation of germination and respiration of Bacillus megaterium spores by mangasese, L-alanine and heat.
Germination of spores of the genus Bacillus can be stimulated by heat, L-alanine, or manganese. The reversal of L-alanine stimulation by D-alanine (Hills, 1950) appears to be specific and, in the present study, affords a tool for the exploration of the mechanisms and interrelations among heat, manganese and L-alanine stimulations. The heat stimulation of bacterial spore germination has long bee...
متن کامل